运放CA3140主要参数
CA3140的主要指标为:
项目 单位 参数
输入失调电压 μV 5000
输入失调电压温度漂移 μV/℃ 8
输入失调电流 pA 0.5
输入失调电流温度漂移 pA/℃ 0.005
这样可以计算出,在25℃的温度下的失调误差造成的影响如下:
项目 单位 参数
输入失调电压造成的误差 μV 5000
输入失调电流造成的误差 μV 0.0045
合计本项误差为 μV 5000
输入信号200mV时的相对误差 % 2.5
输入信号100mV时的相对误差 % 5
输入信号 25mV时的相对误差 % 20
输入信号 10mV时的相对误差 % 50
输入信号 1mV时的相对误差 % 500
初步结论是:高阻运放的输入失调电流很小,它造成的误差远远不及输入失调电压造成的误差,可以忽略;而输入失调电压造成的误差仍然不小,但是可以在工作范围的中心温度处通过调零消除。
这样可以计算出,0~25℃的温度漂移造成的影响如下:
项目 单位 参数
输入失调电压温漂造成的误差 μV 200
输入失调电流温漂造成的误差 μV 0.001
合计本项误差为 μV 200
输入信号200mV时的相对误差 % 0.1
输入信号100mV时的相对误差 % 0.2
输入信号 25mV时的相对误差 % 0.8
输入信号 10mV时的相对误差 % 2
输入信号 1mV时的相对误差 % 20
初步结论是:高阻运放的输入失调电流温漂很小,它造成的误差远远不及输入失调电压温漂造成的误差,可以忽略;在使用高阻运放时,由于失调电压温度系数较大,造成的影响较大,使得它不适合放大100mV以下直流信号。若以上两项误差合计将更大。
由于高阻运放的输入失调电流只有通用运放的千分之一,因此若其它条件不变,仅仅运放的外围电阻等比例增加一倍,几乎不会造成可明显察觉的误差。
HA5159的主要指标为:
项目 单位 参数
输入失调电压 μV 10000
输入失调电压温度漂移 μV/℃ 20
输入失调电流 nA 6
输入失调电流温度漂移 pA/℃ 60
这样可以计算出,在25℃的温度下的失调误差造成的影响如下:
项目 单位 参数
输入失调电压造成的误差 μV 10000
输入失调电流造成的误差 μV 54.5
合计本项误差为 μV 10054
输入信号200mV时的相对误差 % 5.0
输入信号100mV时的相对误差 % 10.1
输入信号 25mV时的相对误差 % 40.2
输入信号 10mV时的相对误差 % 100.5
输入信号 1mV时的相对误差 % 1005
初步结论是:输入失调电压和输入失调电流造成的误差较大,但是可以在工作范围的中心温度处通过调零消除。其中输入失调电压造成的误差远远超过输入失调电流造成的误差。
这样可以计算出,0~25℃的温度漂移造成的影响如下:
项目 单位 参数
输入失调电压温漂造成的误差 μV 500
输入失调电流温漂造成的误差 μV 13.6
合计本项误差为 μV 513
输入信号200mV时的相对误差 % 0.3
输入信号100mV时的相对误差 % 0.51
输入信号 25mV时的相对误差 % 2.05
输入信号 10mV时的相对误差 % 5.14
输入信号 1mV时的相对误差 % 51.4
初步结论是:在使用高速运放时,由于失调电压温度系数较大,造成的影响较大,使得它不适合放大100mV以下直流信号。若以上两项误差合计将更大。
若其它条件不变,仅仅运放的外围电阻等比例增加一倍,造成误差如下:
这样可以计算出,在25℃的温度下的失调误差造成的影响如下:
项目 单位 参数
输入失调电压造成的误差 μV 10000
输入失调电流造成的误差 μV 109
合计本项误差为 μV 10109
这样可以计算出,0~25℃的温度漂移造成的影响如下:
项目 单位 参数
输入失调电压温漂造成的误差 μV 500
输入失调电流温漂造成的误差 μV 27.3
合计本项误差为 μV 527
初步结论:仅仅运放的外围电阻等比例增加一倍,运放的输入失调电压和输入失调电压温漂造成误差不变,而输入失调电流和输入失调电流温漂造成的误差随之增加了一倍。所以,对于高阻信号源或是运放外围的电阻较高时,输入失调电流和输入失调电流温漂造成的误差会很快增加,甚至有可能超过输入失调电压和输入失调电压温漂造成误差,所以这时需要考虑采用高阻运放或是低失调运放。
低功耗运放LF441的主要指标为:
项目 单位 参数
输入失调电压 μV 7500
输入失调电压温度漂移 μV/℃ 10
输入失调电流 nA 1.5
输入失调电流温度漂移 pA/℃ 15
这样可以计算出,在25℃的温度下的失调误差造成的影响如下:
项目 单位 参数
输入失调电压造成的误差 μV 7500
输入失调电流造成的误差 μV 13.6
合计本项误差为 μV 7513
输入信号200mV时的相对误差 % 3.8
输入信号100mV时的相对误差 % 7.5
输入信号 25mV时的相对误差 % 30.1
输入信号 10mV时的相对误差 % 75.1
输入信号 1mV时的相对误差 % 751
初步结论是:输入失调电压和输入失调电流造成的误差较大,但是可以在工作范围的中心温度处通过调零消除。其中输入失调电压造成的误差远远超过输入失调电流造成的误差。
这样可以计算出,0~25℃的温度漂移造成的影响如下:
项目 单位 参数
输入失调电压温漂造成的误差 μV 250
输入失调电流温漂造成的误差 μV 3.4
合计本项误差为 μV 253
输入信号200mV时的相对误差 % 0.1
输入信号100mV时的相对误差 % 0.25
输入信号 25mV时的相对误差 % 1.01
输入信号 10mV时的相对误差 % 2.53
输入信号 1mV时的相对误差 % 25.3
初步结论是:在使用高速运放时,由于失调电压温度系数较大,造成的影响较大,使得它不适合放大100mV以下直流信号。若以上两项误差合计将更大。
若其它条件不变,仅仅运放的外围电阻等比例增加一倍,造成误差如下:
这样可以计算出,在25℃的温度下的失调误差造成的影响如下:
项目 单位 参数
输入失调电压造成的误差 μV 7500
输入失调电流造成的误差 μV 27.3
合计本项误差为 μV 7527
这样可以计算出,0~25℃的温度漂移造成的影响如下:
项目 单位 参数
输入失调电压温漂造成的误差 μV 250
输入失调电流温漂造成的误差 μV 6.8
合计本项误差为 μV 257
初步结论:仅仅运放的外围电阻等比例增加一倍,运放的输入失调电压和输入失调电压温漂造成误差不变,而输入失调电流和输入失调电流温漂造成的误差随之增加了一倍。所以,对于高阻信号源或是运放外围的电阻较高时,输入失调电流和输入失调电流温漂造成的误差会很快增加,甚至有可能超过输入失调电压和输入失调电压温漂造成误差,所以这时需要考虑采用高阻运放或是低失调运放。
精密运放OP07D的主要指标为:
项目 单位 参数
输入失调电压 μV 85
输入失调电压温度漂移 μV/℃ 0.7
输入失调电流 nA 1.6
输入失调电流温度漂移 pA/℃ 12
这样可以计算出,在25℃的温度下的失调误差造成的影响如下:
项目 单位 参数
输入失调电压造成的误差 μV 85
输入失调电流造成的误差 μV 14.5
合计本项误差为 μV 99.5
输入信号200mV时的相对误差 % 0.05
输入信号100mV时的相对误差 % 0.1
输入信号 25mV时的相对误差 % 0.4
输入信号 10mV时的相对误差 % 1.0
输入信号 1mV时的相对误差 % 10
初步结论是:精密运放输入失调电压和输入失调电流造成的误差不太大,而且可以在工作范围的中心温度处通过调零消除。其中输入失调电压造成的误差大于输入失调电流造成的误差。
这样可以计算出,0~25℃的温度漂移造成的影响如下:
项目 单位 参数
输入失调电压温漂造成的误差 μV 17.5
输入失调电流温漂造成的误差 μV 2.7
合计本项误差为 μV 20.2
输入信号200mV时的相对误差 % 0.01
输入信号100mV时的相对误差 % 0.02
输入信号 25mV时的相对误差 % 0.08
输入信号 10mV时的相对误差 % 0.2
输入信号 1mV时的相对误差 % 2.0
初步结论是:在使用精密运放时,由于失调电压温度系数不大,造成的影响不大,使得它能够放大10mV以上的直流信号。
若其它条件不变,仅仅运放的外围电阻等比例增加一倍,造成误差如下:
这样可以计算出,在25℃的温度下的失调误差造成的影响如下:
项目 单位 参数
输入失调电压造成的误差 μV 85
输入失调电流造成的误差 μV 29.1
合计本项误差为 μV 114.1
这样可以计算出,0~25℃的温度漂移造成的影响如下:
项目 单位 参数
输入失调电压温漂造成的误差 μV 17.5
输入失调电流温漂造成的误差 μV 5.5
合计本项误差为 μV 23
初步结论:仅仅运放的外围电阻等比例增加一倍,运放的输入失调电压和输入失调电压温漂造成误差不变,而输入失调电流和输入失调电流温漂造成的误差随之增加了一倍。所以,对于高阻信号源或是运放外围的电阻较高时,输入失调电流和输入失调电流温漂造成的误差会很快增加,甚至有可能超过输入失调电压和输入失调电压温漂造成误差,所以这时需要考虑采用增加运放输入电阻或是降低运放输入失调电流。
高精度运放ICL7650的主要指标为:
项目 单位 参数
输入失调电压 μV 0.7
输入失调电压温度漂移 μV/℃ 0.02
输入失调电流 nA 0.02
输入失调电流温度漂移 pA/℃ 0.2
这样可以计算出,在25℃的温度下的失调误差造成的影响如下:
项目 单位 参数
输入失调电压造成的误差 μV 0.7
输入失调电流造成的误差 μV 0.2
合计本项误差为 μV 0.9
输入信号200mV时的相对误差 % 0.0004
输入信号100mV时的相对误差 % 0.0009
输入信号 25mV时的相对误差 % 0.0035
输入信号 10mV时的相对误差 % 0.0088
输入信号 1mV时的相对误差 % 0.088
初步结论是:高精密运放输入失调电压和输入失调电流造成的误差很小可以不调零。其中输入失调电压造成的误差大于输入失调电流造成的误差。
这样可以计算出,0~25℃的温度漂移造成的影响如下:
项目 单位 参数
输入失调电压温漂造成的误差 μV 0.5
输入失调电流温漂造成的误差 μV 0.05
合计本项误差为 μV 0.55
输入信号200mV时的相对误差 % 0.0003
输入信号100mV时的相对误差 % 0.0005
输入信号 25mV时的相对误差 % 0.0022
输入信号 10mV时的相对误差 % 0.0055
输入信号 1mV时的相对误差 % 0.055
初步结论是:在使用高精密运放时,由于失调电压温度系数很小,几乎没有造成影响,使得它能够放大1mV以以下的直流信号。
LM324的主要指标为:
项目 单位 参数
输入失调电压 μV 9000
输入失调电压温度漂移 μV/℃ 7
输入失调电流 nA 7
输入失调电流温度漂移 pA/℃ 10
这样可以计算出,在25℃的温度下的失调误差造成的影响如下:
项目 单位 参数
输入失调电压造成的误差 μV 9000
输入失调电流造成的误差 μV 63.6
合计本项误差为 μV 9063
输入信号200mV时的相对误差 % 4.5
输入信号100mV时的相对误差 % 9.1
输入信号 25mV时的相对误差 % 36.3
输入信号 10mV时的相对误差 % 90.6
输入信号 1mV时的相对误差 % 906
初步结论是:输入失调电压和输入失调电流造成的误差较大,但是可以在工作范围的中心温度处通过调零消除。其中输入失调电压造成的误差远远超过输入失调电流造成的误差。
这样可以计算出,0~25℃的温度漂移造成的影响如下:
项目 单位 参数
输入失调电压温漂造成的误差 μV 175
输入失调电流温漂造成的误差 μV 2.3
合计本项误差为 μV 177.3
输入信号200mV时的相对误差 % 0.09
输入信号100mV时的相对误差 % 0.18
输入信号 25mV时的相对误差 % 0.71
输入信号 10mV时的相对误差 % 1.77
输入信号 1mV时的相对误差 % 17.7
初步结论是:在使用LM324时,由于输入失调电压温度系数较大,造成的影响较大,使得它不适合放大100mV以下直流信号。若以上两项误差合计将更大。
若其它条件不变,仅仅运放的外围电阻等比例增加一倍,造成误差如下:
这样可以计算出,在25℃的温度下的输入失调误差造成的影响如下:
项目 单位 参数
输入失调电压造成的误差 μV 9000
输入失调电流造成的误差 μV 127.3
合计本项误差为 μV 9127
这样可以计算出,0~25℃的温度漂移造成的影响如下:
项目 单位 参数
输入失调电压温漂造成的误差 μV 175
输入失调电流温漂造成的误差 μV 4.5
合计本项误差为 μV 179.5
© 2010 IC邮购网 icyougou.com版权所有